Construction of the colchicine framework via two consecutive cyclopropane-mediated ring-expansion reactions

Martin G. Banwell, ${ }^{*, a}$ Mariana Berak ${ }^{b}$ and David C. R. Hockless ${ }^{a}$
${ }^{a}$ Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 0200, Australia
${ }^{b}$ School of Chemistry, The University of Melbourne, Parkville, Victoria 3052, Australia

Abstract

The seven-membered B- and C-rings of tropone 19, a molecule which embodies the framework of the alkaloid colchicine 1, have both been constructed via cyclopropanemediated expansion of a six-membered ring precursor.

Colchicine 1, an alkaloid isolated from various sources including the meadow saffron Colchicum autumnale, ${ }^{1}$ is the prototypic anti-mitotic agent and has been investigated as a drug for the treatment of various human diseases including glaucoma, ${ }^{2}$ multiple sclerosis, ${ }^{3}$ hepatitis B^{4} and HIV-I and -2. ${ }^{5}$ It is now used clinically to combat the effects of both gout and familial Mediterranean fever ${ }^{1}$ and is also undergoing clinical development, at Abbott Laboratories and Merck Human Health Division, as an agent for treatment of the liver disease primary sclerosing cholangitis. ${ }^{6}$

1

As a result of its intriguing biological activity and novel molecular architecture, colchicine has been the subject of numerous synthetic studies. To date more than a dozen syntheses of 1 have been reported. ${ }^{7}$ However, a significant proportion of these are only formal total syntheses since they rely on the acquisition of an advanced intermediate associated with the original (1959) synthesis of 1 . Consequently, interest in developing flexible new methods for construction of the colchicine framework remains high ${ }^{8}$ especially because of the need to prepare, in an economical manner, colchicinoids with substitution patterns other than those available through manipulation of the natural product itself. We now report a novel synthesis of the colchicine framework in which both seven-membered rings are constructed via cyclopropanemediated ring-expansion of a six-membered ring. The reaction

[^0]sequence used is relatively straightforward but potentially highly flexible and permits ready introduction of a C-7 substituent, as required for anti-mitotic activity in colchicinoids. ${ }^{1} \dagger$

The synthesis (Scheme 1) starts with commercially available β-tetralone 2 which is quantitatively converted into the enol ether $3(100 \%)$ using conditions defined by Heesing and coworkers. ${ }^{9}$ Reaction of this latter compound with phase-transfer generated dibromocarbene presumably gives adduct 4 as the primary reaction product, but this material undergoes in situ ring-expansion to afford, after aqueous acid work-up, the benzocycloheptenone $5^{10}\left(36 \%, \mathrm{mp} 75-76^{\circ} \mathrm{C}\right)$. Compound 5 was readily converted into the corresponding ethylene acetal, $6 \ddagger$ $\left(85 \%, \mathrm{mp} 91-92^{\circ} \mathrm{C}\right)$ which was, in turn, subjected to treatment with $\mathrm{Bu}^{\mathrm{L} L i}$ and trimethylsilyl chloride thereby affording, via the lithiated intermediate 7, the alkenylsilane 8 (85%). Dichlorocarbene addition to the double bond associated with this last compound could not be effected under a variety of conditions and this outcome is attributed to the steric congestion within the molecule. As a consequence the acetal protecting group associated with compound 8 was removed, but the double bond within the resulting enone $9(100 \%)$ was also unreactive towards dichlorocarbene, probably because of deactivation by the conjugated carbonyl group. Such problems were eventually overcome by selective 1,2 -reduction of the enone 9 using the Luche reagent ${ }^{11}$ and protecting the resultant allylic alcohol $\mathbf{1 0} \S$ (99%) as the corresponding acetate $11(90 \%)$. This last compound then underwent smooth dichlorocarbene addition to give a single adduct $12\left(89 \%, \mathrm{mp} 126-127^{\circ} \mathrm{C}\right)$. Treatment of cyclopropane 12 with tetrabutylammonium fluoride (TBAF) resulted in formation of the 1,3-ring-fused cyclopropene 13, which was trapped in a Diels-Alder reaction with buta-1,3diene to give the tetracyclic adduct $14\left(61 \%, \mathrm{mp} 108-109^{\circ} \mathrm{C}\right)$ as the major reaction product. ${ }^{12}$ In anticipation of potential problems associated with acyl group migration as a result of dihydroxylation of the norcarenyl double bond, the acetate group within compound 14 was removed hydrolytically and the resulting alcohol $15\left(95 \%, \mathrm{mp} 127-128^{\circ} \mathrm{C}\right)$ oxidised to ketone $16\left(95 \%, \mathrm{mp} 124-125^{\circ} \mathrm{C}\right)$ with pyridinium chlorochromate (PCC). This last compound then underwent smooth and diastereofacially selective cis-dihydroxylation on treatment with trimethylamine N-oxide (TMANO) and catalytic amounts of osmium tetroxide. ${ }^{13}$ The diol $17\left(77 \%\right.$, mp $\left.202-203^{\circ} \mathrm{C}\right)$ formed in this manner was subjected to single-crystal X-ray

[^1]

18

19
20
Scheme 1 Reagents and conditions: i, $(\mathrm{MeO})_{3} \mathrm{CH}$ (1.8 equiv.), $p-\mathrm{TsOH}$ (trace), $20-60^{\circ} \mathrm{C}, 16 \mathrm{~h}$; ii, $\mathrm{CHBr}_{3}, 50 \%$ aq. NaOH, TEBAC (trace), $60^{\circ} \mathrm{C}, 11 \mathrm{~h}$, then $\mathrm{H}_{3} \mathrm{O}^{+}$work-up; iii, $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ (4.0 equiv.), p TsOH (trace), $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux, 3 h ; iv, TMSCl (4.0 equiv.), TMEDA (10.5 equiv.), THF, $-100^{\circ} \mathrm{C}$ then $1.7 \mathrm{~m} \mathrm{Bu}{ }^{t} \mathrm{Li}$ in pentane (2.0 equiv.), -100 to $0^{\circ} \mathrm{C}, 3 \mathrm{~h}$; v, $\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}$ (3.2 equiv.), $\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with trace EtOH , $50^{\circ} \mathrm{C}, 8 \mathrm{~h}$; vi, NaBH_{4} (1.7 equiv.), $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (1.1 equiv.), $\mathrm{CH}_{3} \mathrm{OH}$, $0-18^{\circ} \mathrm{C}, 0.75 \mathrm{~h}$; vii, $\mathrm{Ac}_{2} \mathrm{O}$ (3.5 equiv.), DMAP (0.03 equiv.), pyridine, $5^{\circ} \mathrm{C}, 40 \mathrm{~h}$; viii, $\mathrm{CHCl}_{3}, 50 \%$ aq. NaOH , TEBAC (trace), $0-18^{\circ} \mathrm{C}, 48 \mathrm{~h}$; ix, buta-1,3-diene (ca. 30 equiv.), TBAF (1.3 equiv.), THF, $18^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$; x, KOH (30 equiv.), $\mathrm{MeOH}, 0-18^{\circ} \mathrm{C}, 1 \mathrm{~h}$; xi, PCC (2.6 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0-18^{\circ} \mathrm{C}, 3 \mathrm{~h} ; \mathrm{xii}, \mathrm{OsO}_{4}\left(1 \mathrm{~mol} \%\right.$), TMANO (1.05 equiv.), $\mathrm{Bu}^{t} \mathrm{OH}, \mathrm{H}_{2} \mathrm{O}$, pyridine, $83^{\circ} \mathrm{C}, 8 \mathrm{~h}$; xiii, ($\left.\mathrm{F}_{3} \mathrm{CCO}\right)_{2} \mathrm{O}$ (2.9 equiv.), DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-60^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$, then NEt_{3} (7 equiv.), $-60^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$; xiv, (MeO$)_{2} \mathrm{SO}_{2}$ (54 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (18 equiv.), $\mathrm{Me}_{2} \mathrm{CO}, 18^{\circ} \mathrm{C}, 14 \mathrm{~h}$

Fig. 1 ORTEP drawings of (a) compound 17 and (b) compound 19, derived from X-ray crystallographic data
analysis [Fig. 1(a)], thereby establishing the illustrated stereochemistries within all of compounds 12 to $\mathbf{1 7}$. Treatment of the diol with the Swern reagent derived from trifluoroacetic anhydride and DMSO ${ }^{14}$ resulted in formation of the tropolone 18, ${ }^{15}$ which was immediately subjected to O-methylation using dimethyl sulfate (DMS) and potassium carbonate. In this

- Crystal data for compound 17: $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClO}_{3}, M=292.76, T=$ 213(1) K, triclinic, space group $P \overline{1}, a=7.1122(7), b=9.6596(9)$, $c=11.244(1) \AA, \alpha=104.067(8), \quad \beta=102.759(9), \gamma=103.555(8)^{\circ}$, $U=696.1(1) \quad \AA^{3}, \quad D_{\text {c }} \quad(Z=2)=1.397 \mathrm{~g} \mathrm{~cm}^{-3}, \quad F(000)=308$, $\mu(\mathrm{Cu}-\mathrm{K} \alpha)=24.89 \mathrm{~cm}^{-1}$, semi-empirical absorption correction; 2063 unique data $\left(20_{\max }=120.1^{\circ}\right)$, 1535 with $I>3 \sigma(I) ; R=0.035, w \cdot R=$ $0.035, \mathrm{GOF}=1.68$.
For compound 19: $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClO}_{3}, M=300.74, T=295(1) \mathrm{K}$, orthorhombic, space group Pbca, $a=11.752(2), \quad b=9.001(1)$, $c=26.863(2) \AA, U=2841(1) \AA^{3}, \quad D_{\mathrm{c}}(Z=8)=1.406 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=1248, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=24.62 \mathrm{~cm}^{1}$, semi-empirical absorption correction; 2451 unique data $\left(20_{\max }=120.1^{\circ}\right), 1381$ with $I>3 \sigma(I)$; $R=0.037, w R=0.029, \mathrm{GOF}=1.77$.

Data were measured on a Rigaku AFC6R rotating anode diffractometer (graphite crystal monochromator, $\lambda=1.54180 \AA$). Refinement was by full-matrix least-squares analysis on F using the TEXSAN structure analysis software of Molecular Structure Corporation. ${ }^{16}$ Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Information for Authors, J. Chem. Soc., Perkin Trans. 1, 1996, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 207/48.
manner a 6:1 mixture of compound $\mathbf{1 9}\left(\mathrm{mp} 229-230^{\circ} \mathrm{C}\right)$ and $\mathbf{2 0}$ ($\mathrm{mp} 198-199^{\circ} \mathrm{C}$) $(42 \%$ combined yield from 17) was obtained. These two compounds were readily separated from one another by chromatography on silica gel and the structure of compound 19 was confirmed by X-ray crystallography [Fig. 1(b)].9 Troponoid 19 embodies the complete carbocyclic framework associated with colchicine 1.

Experimental

5-Acetoxy-11c-chloro-1,4,6,7,11b,11c-hexahydro-5H-benzo[c]benzo[2,3]cyclopropa [1,2-a]cycloheptene 14

A solution of cyclopropane $12(354 \mathrm{mg}, 0.99 \mathrm{mmol})$ in THF $\left(5 \mathrm{~cm}^{3}\right)$ was placed in an Ace ${ }^{\text {TM }}$ pressure tube. The tube and its contents were cooled to $-30^{\circ} \mathrm{C}$ and butadiene ($3 \mathrm{~cm}^{3}$) was then condensed into it. TBAF ($1.3 \mathrm{~cm}^{3}$ of a 1.0 m solution in THF, 1.28 mmol) was added and the tube sealed whilst the contents were still frozen. The reaction mixture was then warmed to room temperature and subjected to magnetic stirring for 0.5 h before being re-cooled to $-30^{\circ} \mathrm{C}$. The tube was then opened (fumehood), the thawed contents poured onto water $\left(20 \mathrm{~cm}^{3}\right)$ and the resulting mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined extracts were dried, filtered and concentrated under reduced pressure to afford a brown oil which was subjected to flash chromatography (silica, 9:1 hexane-EtOAc elution). Concentration of the appropriate fractions ($R_{\mathrm{f}} 0.4$) gave a light brown oil which was subjected to preparative TLC (silica, 9:1 hexane-EtOAc elution). Extraction of the major band then gave compound $14(184 \mathrm{mg}, 61 \%)$ as a white solid which could be subjected to the next step of the reaction sequence. A portion of this material was further purified by semi-preparative HPLC (Waters μ-porasil column, $9: 1$ hexaneEtOAc elution, flow rate $2.0 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$) which provided, after concentration of the appropriate fractions ($R_{\mathrm{t}} 13.5 \mathrm{~min}$), a spectroscopically pure sample of compound 14 as white crystalline masses, $\mathrm{mp} 108-109^{\circ} \mathrm{C}$ (Found, $\mathbf{M}^{+\bullet}$, 302.1067. $\mathrm{C}_{18} \mathrm{H}_{19}{ }^{35} \mathrm{ClO}_{2}$ requires $\left.M^{+\cdot}, 302.1074\right)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2910$, 1733, 1240 and $1026 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.25-7.10(4 \mathrm{H}$, complex m, aromatic Hs), $5.67(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$ or H 3$), 5.59(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3$ or H2), $4.76(1 \mathrm{H}, \mathrm{dd}, J 11$ and $7, \| \mathrm{H} 5), 3.10(1 \mathrm{H}, \mathrm{m}), 2.96-2.79$ (3 H, complex m), 2.61 ($1 \mathrm{H}, \mathrm{dd}, J 13$ and 7), 2.49 (1 H , complex $\mathrm{m}), 2.40(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 11 \mathrm{~b}), 2.21(1 \mathrm{H}$, apparent septet, $J c a .7), 2.01$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCOCH}_{3}$) and $1.77\left(1 \mathrm{H}\right.$, complex m); $\delta_{\mathrm{c}}(75 \mathrm{MHz}$) $169.5\left(\mathrm{OCOCH}_{3}\right), 139.4,134.3,131.0,128.9,127.3,126.5$, 123.7, 123.5, 73.1, 52.1, 36.3, 30.2, 28.1, 27.6, 26.9, 24.1 and 21.2; $m / z(\mathrm{EI}, 70 \mathrm{eV}) 302(0.3 \%), 267\left[0.8,\left(\mathrm{M}-\mathrm{Cl}^{\circ}\right)^{+}\right], 242$
$\left[11,(\mathrm{M}-\mathrm{AcOH})^{+}\right], 207\left[16,\left(\mathrm{M}-\mathrm{AcOH}-\mathrm{Cl}^{\bullet}\right)^{+}\right], 141$ (89) and 130 (100).

Acknowledgements

The Australian Research Council is thanked for generous financial support. M. B. is the grateful recipient of an Australian Postgraduate Research Award.

References

1 O. Boyé and A. Brossi, in The Alkaloids, ed. A. Brossi and G. A Cordell, Academic Press, New York, 1992, vol. 41, pp. 125-176 and references cited therein.
2 R. N. Williams and P. Bhattacherjee, Eur. J. Pharmacol., 1982, 77, 17.

3 (a) M. J. Lyons, R. Amadov, C. Petito, K. Nagashima, H. Weinreb and J. B. Zabriskie, J. Exp. Med., 1986, 164, 1803; (b) H. J. Weinreb, PCT Int. Appl. WO 8702583 (Chem. Abstr., 1987, 107, 127166s).
4 M. Mourelle and M. A. Meza, J. Hepatol., 1989, 8, 165 (Chem. Abstr., 1989, 110, 185927q)
5 W. W. Hall, S. E. Read, M. Lyons and J. B. Zabriskie, PCT Int Appl. WO 8912444 (Chem. Abstr., 1990, 112, 210971z)
6 See the American Liver Foundation information page on the World Wide Web - http://sadieo.ucsf.edu/alf/alffinal/topdrugtrials.html.
7 M. G. Banwell, J. N. Lambert, M. F. Mackay and R. J. Greenwood J. Chem. Soc., Chem. Commun., 1992, 974 and references cited therein; M. G. Banwell, Pure Appl. Chem., 1996, 68, 539.
8 See, for example, D. L. Wright and M. C. McMills, American Chemical Society (Division of Organic Chemistry) Book of Abstracts, Abstract No. 148, from 210th ACS National Meeting, Chicago, IL, A ugust 20-24, 1995.
9 R. Radtke, H. Hintze, K. Rösler and A. Heesing, Chem. Ber., 1990 123, 627.
10 Y. K. Yildiz, H. Secen, M. Krawiec, W. H. Watson and M. Balci, J Org. Chem., 1993, 58, 5355
11 A. L. Gemal and J.-L. Luche, J. Am. Chem. Soc., 1981, 103, 5454.
12 For related reactions involving the generation and Diels-Alder trapping of ring-fused cyclopropenes, see M. G. Banwell, M. Corbett, J. Gulbis, M. F. Mackay and M. E. Reum, J. Chem. Soc., Perkin Trans. I, 1993, 945.
13 R. Ray and D. S. Matteson, Tetrahedron Lett., 1980, 21, 449.
14 C. M. Amon, M. G. Banwell and G. L. Gravatt, J. Org. Chem., 1987. 52, 4851.
15 For related oxidative ring-expansions of norcaranediols, see M. G Banwell and R. Onrust, Tetrahedron Lett., 1985, 26, 4543.
16 TEXSAN: Single Crystal Structure Analysis Software, ver. 1.7-1, 1995, Molecular Structure Corporation, The Woodlands, TX, 77381.

Paper 6/04263E
Received 18th June 1996
Accepted 2nd July 1996

[^0]: \dagger We have chosen to introduce a carbonyl group at C-7 because (i) colchicone (5,6-dihydro-1,2,3,10-tetramethoxybenzo [a] heptalene-7,9dione) is itself a natural product (T. H.Al-Tel, M. H. Abu Zarga, S. S. Sabri, A. J. Freyer and M. Shamma, J. Nat. Prod., 1990, 53, 623) which is assuming increasing pharmacological significance (A. Brossi, personal communication to M. G. B.) and (ii) colchicone can be reduced to the corresponding C -7 alcohol [albeit non-enantioselectively (S. C. Peters and M. G. Banwell, unpublished observations; M. G. Banwell, S. C. Peters, R. J. Greenwood, M. F. Mackay, E. Hamel and C. M. Lin, Aust. J. Chem., 1992, 45, 1577)] which can, in turn, be converted into the C-7 acetamido group (see M. G. Banwell, Pure Appl. Chem., 1996, 68,539) as required in colchicine 1.

[^1]: \ddagger All new compounds had spectroscopic data [IR, UV (where appropriate) and NMR and mass spectra] consistent with the assigned structure. Satisfactory combustion and/or high resolution mass spectral analytical data were obtained for new compounds and/or suitable derivatives. The yields of new compounds are unoptimised.
 § All new compounds possessing one or more stereogenic centres are racemic but, for the sake of simplicity, only one enantiomer is shown.

